
The History of PHP

• Server-side scripting language
– PHP = Personal Home Page tools

– Somewhat like C but much higher level, OOP model added
later

– Especially with Apache/Linux/MySQL

– PHP is the most widely used scripting language for web
programming, used today with many commercial sites

– Runs on both Unix and Windows platforms, with most web
servers

• Available for free
– http://www.php.net

http://www.php.net/

The History of PHP

• Rasmus Lerfdorf

• Not a trained
computer scientist

• Consultant building
dynamic web sites -
got tired of doing the
same thing over and
over in C

PHP & HTML

• PHP extends HTML pages by adding server-
executed code segments to HTML pages.

• The output of the execution of the PHP code is
merged into the HTML page.

<?php

echo "Hello World. Today is ".date().". ";

?>How are you?

Hello World. Today is Wednesday. How are
you?

echo & print

• ?

MySQL

• MySQL is one of the most popular free and
open source database engines in the market
place.

• MySQL powers Facebook, Yahoo!, and millions
of other dynamic web sites.

INSERT INTO users VALUES('Smith', 'John', 'jsmith@mysite.com');

SELECT surname,firstname FROM users WHERE

email='jsmith@mysite.com';

JavaScript

• JavaScript is a C-like programming language
that can be included in an HTML web page.
JavaScript allows the builder of a web page to
embed dynamic elements within a web page.
JavaScript programs run in the browser (i.e.
the Client)

<script type="text/javascript">

document.write("Hello World. Today is " + Date());

</script>

JavaScript: Brendan Eich

• Invented
JavaScript in
May 1995 in ten
days

About the PHP Language

• Syntax is inspired by C

– Curly braces, semicolons, no significant
whitespace

• Syntax inspired by perl

– Dollar signs to start variable names, associative
arrays

• Extends HTML to add segments of PHP
within an HTML file.

Science Calculations

System

http://en.wikipedia.org/wiki/History_of_programming_languages

System

Scripting/

Interpreted

C uses curly

braces { } for

code blocks.

Request / Response Cycle

• You enter http://server.com into your browser’s
address bar.

• Your browser looks up the IP address for server.com.
• Your browser issues a request for the home page at

server.com.
• The request crosses the Internet and arrives at the

server.com web server.
• The web server, having received the request looks

for the web page on its hard disk.
• The web page is retrieved by the server and

returned to the browser.
• Your browser displays the web page.

In More Detail...
• You enter http://server.com into your browser’s address bar.

• Your browser looks up the IP address for server.com.

• Your browser issues a request to that address for the web server’s home page.

• The request crosses the Internet and arrives at the server.com web server.

• The web server, having received the request, fetches the home page from its hard
disk.

• With the home page now in memory, the web server notices that it is a file incor-
porating PHP scripting and passes the page to the PHP interpreter.

• The PHP interpreter executes the PHP code.

• Some of the PHP contains MySQL statements, which the PHP interpreter now
passes to the MySQL database engine.

• The MySQL database returns the results of the statements back to the PHP
interpreter

• The PHP interpreter returns the results of the executed PHP code, along with the
results from the MySQL database, to the web server.

• The web server returns the page to the requesting client, which displays it.

Internet

HTML JavaScript

AJAX

HTTP Request

Response GET
PHP

MySql

Cookies

How do Web Servers work?

• Client specifies document at a specific web
address that is desired (specified by a URL)
– Ex: http://www.just.edu.jo/

• If the document is HTML or text, the server
simply forwards it back to the client
– If it is text, it is shown unaltered in the browser

– If it is HTML it is rendered in the client's browser
• html tags are interpreted and result is shown to the

user

17

How do Web Servers work?

• However, the requested document may be an
executable script, or it may be HTML with an
embedded script
– The script could be written in any of many different

web scripting languages

• In these cases, the server executes the script
– If the entire document was a script, the server simply

sends the output back to the client
– If the document had an embedded script, the script

sections are replaced with the output and the
modified document is then sent to the client

How do Web Servers work?

• Note that the client never sees the server-
side script code

– This is important – typically client should not see
code that the server executes to process requests

– The server may be accessing files whose names
should not be seen, or preprocessing data that it
does not want the client to see

18

Introduction. to HTML

• HTML is a mark-up language

– Idea is that extra characters / symbols in the text
provide information to a parser, which uses that
information to render the document in a certain
way

– Ex:
Hello There

– The tags do not appear in the rendered document

– The parser utilizes them to alter the appearance of the text

19

Introduction. to HTML

• HTML has evolved greatly over the years

– New tags have been added

– Some tags have been removed

– Syntax has been standardized

• The current version is HTML 5

– Still not universally used

20

21

Introduction to PHP

• PHP scripts are often embedded within HTML
documents
– The server processes the HTML document,

executing the PHP segments and substituting the
output within the HTML document

– The modified document is then sent to the client

– As mentioned previously, the client never sees
the PHP code
• The only reason the client even knows PHP is involved

is due to the file extension  .php

PHP Program Structure

• PHP, as with many scripting languages, does
not have nearly the same structural
requirements as a language like Java

– A script can be just a few lines of code or a very
large, structured program with classes and objects

• The complexity depends on the task at hand

– However, there are some guidelines for
incorporating PHP scripts into HTML files

22

Processes

• When a PHP file is requested, the PHP
interpreter parses the entire file
– Any content within PHP delimiter tags is

interpreted, and the output substituted

– Any other content (i.e. not within PHP delimiter
tags) is simply passed on unchanged

– This allows us to easily mix PHP and other content
(ex: HTML)
• See:

– http://us3.php.net/manual/en/language.basic-syntax.phptags.php

– http://us3.php.net/manual/en/language.basic-syntax.phpmode.php

23

http://us3.php.net/manual/en/language.basic-syntax.phptags.php
http://us3.php.net/manual/en/language.basic-syntax.phptags.php
http://us3.php.net/manual/en/language.basic-syntax.phptags.php
http://us3.php.net/manual/en/language.basic-syntax.phptags.php
http://us3.php.net/manual/en/language.basic-syntax.phptags.php
http://us3.php.net/manual/en/language.basic-syntax.phpmode.php
http://us3.php.net/manual/en/language.basic-syntax.phpmode.php
http://us3.php.net/manual/en/language.basic-syntax.phpmode.php
http://us3.php.net/manual/en/language.basic-syntax.phpmode.php
http://us3.php.net/manual/en/language.basic-syntax.phpmode.php

24

Consider the following PHP file

<!DOCTYPE html>

<html>

<head>

<title>Simple PHP Example</title>

</head>

<body>

<?php echo "<p><h1>Output</h1>";

echo "<h2>Output</h2>";

echo "<h3>Output</h3></p>";

?>

<script language="PHP">

echo "\nMore PHP Output\n";

echo "New line in source but not rendered";

echo "
";

echo "New line rendered but not in source";

</script>

</body>

</html>

HTML 5 Document

Root HTML Tag

Document Head

D
O
C

B
O
D
Y

PHP Code

Now consider the resulting HTML

<!DOCTYPE html>

<html>

<head>

<title>Simple PHP Example</title>

</head>

<body>

<p><h1>Output</h1><h2>Output</h2><h3>Output</h3></p>

More PHP Output

New line in source but not rendered
New line rendered but not in source </body>

</html>

• How will it look in the browser?
– Look at it in the browser!

25

Variable Names

• Start with a dollar sign ($) followed by a letter
or underscore, followed by any number of
letters, numbers, or underscores

• Case matters

$abc = 12;
$total = 0;
$largest_so_far = 0;

abc = 12;
$2php = 0;
$bad-punc = 0;

Variable Declarations

• Variables do not need to be declared before you use
them.

• Example: $var1 = 25;

• To help set off a variable identifier within a string,
you can surround it with curly brackets.

• This will become helpful when we start discussing
arrays and objects.

• Example: echo "The value is {$var1}." will display
"The value is 25."

Data Types

• Scalar types

– boolean

– float

– integer

– string

• Compound types

– array

– object

Using Scalar Types

• A boolean variable can be assigned only
values of true or false.

$answer = false;

$finished = true;

• An integer is a whole number (no decimal
point)

$age = 31;

Using Scalar Types (continued)
• A float has a decimal point and may or may not have an

exponent

$price = 12.34;

$avog_num = 6.02e23; //6.02x10^23

• A string is identified as a sequence of characters

$name = "John Smith";

• Strings can be concatenated using a dot (.)

$name = "John" . " Smith";

Constants
• Constants associate a name with a scalar value.

• Constants are defined using the function define().

define("PI", 3.141593);

• There are a number of predefined constants. These
include:
– M_E = 2.718281828459

– M_PI = 3.1415926535898

– M_2_SQRTPI = 1.1283791670955 (Square root of pi)

– M_1_PI = 0.31830988618379 (Square root of 1/pi)

– M_SQRT2 = 1.4142135623731 (Square root of 2)

– M_SQRT1_2 = 0.70710678118655 (Square root of ½)

Arithmetic Operators
Operator Operation Example Result

+ Addition $y = 2 + 2; $y will contain 4

– Subtraction $y = 3;

$y = $y – 1;

$y will contain 2

/ Division $y = 14 / 2; $y will contain 7

* Multiplication $z = 4;

$y = $z * 4;

$y will contain 16

% Modulo $y = 14 % 3; $y will contain 2

++ Increment $y = 7;

$y++;

$y will contain 8

-- Decrement $y = 7;

$y--;

$y will contain 6

Bitwise Logical Operations
• ~ Bitwise NOT operator: Inverts each bit of the

single operand placed to the right of the
symbol

• & Bitwise AND: Takes the logical-bitwise AND
of two values

• | Bitwise OR operator: Takes the logical-
bitwise OR of two values

• ^ Bitwise XOR: Takes the logical-bitwise
exclusive-OR of two values

Bitwise Shift Operations
• << Left shift: Shifts the left operand left by the

number of places specified by the right
operand filling in with zeros on the right side.

• >> Sign-propagating right shift: Shifts the left
operand right by the number of places
specified by the right operand filling in with
the sign bit on the left side.

• >>> Zero-fill right shift operator: Shifts the
left operand right by the number of places
specified by the right operand filling in with
zeros on the left side.

Flow Control

• As in JavaScript, flow control consists of a
number of reserved words combined with
syntax to allow the computer to decide which
parts of code to execute, which to jump over,
and which to execute multiple times.

• For the most part, the flow control that you
learned for JavaScript is the same for PHP.

If-Statement

• The code below represents the syntax of a
typical if-statement:

if ($grade > 93)

print "Student's grade is A";

• If grade was 93 or below, the computer would
simply skip this instruction.

If-Statement (continued)

• Just like JavaScript, multiple instructions may
be grouped using curly brackets. For example:

if ($grade > 93)

{

print "Student's grade is A";

$honor_roll_value = true;

}

If-Statement (continued)
• As in JavaScript, the programmer can string together if-

statements to allow the computer to select from one of a
number of cases using elseif and else. (Note that
JavaScript allows else if while PHP uses elseif.)

• For example:

if ($grade > 93)

print "Student's grade is an A";

elseif ($grade > 89)

print Student's grade is an A-";

else

print "Student did not get an A";

Comparison Operators
• > Returns true if the first value is greater

than the second
• >= Returns true if the first value is greater

than or equal to the second
• < Returns true the first value is less than

the second
• <= Returns true if the first value is less than

or equal to the second
• == Returns true if first value is equal to second
• != Returns true if first value is not equal to

second

Logical Operators
• ! Returns true if its operand is zero or

false

• && Returns false if either operand is zero
or false

• || Returns false if both operands are zero
or false

Switch-Statement
• The switch statement can be used as an

alternative to the if, elseif, else method.

switch($menu)

{

case 1:

print "You picked one";

break;

case 2:

print "You picked two";

break;

default:

print "You did not pick one or two";

break;

}

Switch-Statement (continued)
• Note that if a break is not encountered at the

end of a case, the processor continues through
to the next case.

• Example: If $var1=1, it will print both lines.

switch($var1)

{

case 1:

print "The value was 1";

default:

print "Pick another option";

break;

}

While-loop

• PHP uses the while-loop just like JavaScript.

• Like the if-statement, this format also uses a
condition placed between two parenthesis

• As long as the condition evaluates to true, the
program continues to execute the code
between the curly brackets in a round-robin
fashion.

While-loop (continued)
• Format:

while(condition)

{

statements to execute

}

• Example:

$count = 1;

while($count < 72)
{

print "$count ";

$count++;

}

do … while loop
• The do … while loop works the same as a while

loop except that the condition is evaluated at
the end of the loop rather than the beginning

• Example:

$count = 1;

do

{

print "$count ";

$count++;

}while($count < 72);

for-loop

• In the two previous cases, a counter was used
to count our way through a loop.

• This task is much better suited to a for-loop.

for ($count = 1; $count < 72; $count++)

{

print "$count ";

}

• A "break" can be used to break out of a loop
earlier.

Type Conversion

• Different programming languages deal with variable
types in different ways. Some are strict enforcing rules
such as not allowing an integer value to be assigned to a
float.

• The process of converting from one data type to another
is called "casting".

• To convert from one type to another, place the type
name in parenthesis in front of the variable to convert
from.

• In some cases, there are functions that perform the type
conversion too.

Some Examples of Type Conversion

• $ivar = (int) $var;

• $ivar = (integer) $var;

• $ivar = intval($var);

• $bvar = (bool) $var;

• $bvar = (boolean) $var;

• $fvar = (float) $var;

• $fvar = floatval($var);

• $svar = (string) $var;

• $svar = stringval($var);

Examples of Type Conversion
(continued)

Value Cast to int Cast to bool Cast to string Cast to float

null 0 false "" 0

true 1 true "1" 1

false 0 false "" 0

0 0 false "0" 0

3.8 3 true "3.8" 3.8

"0" 0 false "0" 0

"10" 10 true "10" 10

"6 feet" 6 true "6 feet" 6

"foo" 0 true "foo" 0

Type Conversion (continued)
• PHP can automatically convert types too.

• If a variable is used as if it were a different
type, the PHP script engine assumes a type
conversion is needed and does it for you.

• Examples:

$var = "100" + 15; // var$ set to integer = 115

$var = "100" + 15.0; // var$ set to float = 115

$var = 15 + " bugs"; // var$ set to integer = 15

$var = 15 . " bugs"; // var$ set to string = "15

bugs"

