The History of PHP

e Server-side scripting language
— PHP = Personal Home Page tools

— Somewhat like C but much higher level, OOP model added
later

— Especially with Apache/Linux/MySQL

— PHP is the most widely used scripting language for web
programming, used today with many commercial sites

— Runs on both Unix and Windows platforms, with most web
servers

e Available for free
— http://www.php.net

http://www.php.net/

The History of PHP

e Rasmus Lerfdorf

* Not a trained
computer scientist

* Consultant building
dynamic web sites -
got tired of doing the

same thing over and Rasmus Lerdorf
over in C PHP.Inventor - Yahoo!
w

PHP & HTML

 PHP extends HTML pages by adding server-
executed code segments to HTML pages.

* The output of the execution of the PHP code is
merged into the HTML page.

<?php
echo "Hello World. Today is ".date().". ";
?>How are you?
Hello World. Today is Wednesday. How are
you?

echo & print

MySQL

 MySQL is one of the most popular free and
open source database engines in the market
place.

 MySQL powers Facebook, Yahoo!, and millions
of other dynamic web sites.

INSERT INTO users VALUES('Smith’, 'John’, 'jsmith@mysite.com’);

SELECT surname,firsthname FROM users WHERE
email='jsmith@mysite.com’;

JavaScript

e JavaScript is a C-like programming language
that can be included in an HTML web page.
JavaScript allows the builder of a web page to
embed dynamic elements within a web page.
JavaScript programs run in the browser (i.e.
the Client)

<script type="text/javascript">
document.write("Hello World. Today is " + Date());
</script>

JavaScript: Brendan Eich

* |nvented
JavaScript in
May 1995 in ten

days

About the PHP Language

e Syntaxis inspired by C
— Curly braces, semicolons, no significant
whitespace
e Syntax inspired by perl
— Dollar signs to start variable names, associative
arrays
* Extends HTML to add segments of PHP
within an HTML file.

Science Calculations

C uses curly
braces { } for
code blocks.

http://en.wikipedia.org/wiki/History of programming_languages

Request / Response Cycle

You enter http://server.com into your browser’s
address bar.

Your browser looks up the IP address for server.com.

Your browser issues a request for the home page at
server.com.

The request crosses the Internet and arrives at the
server.com web server.

The web server, having received the request looks
for the web page on its hard disk.

The web page is retrieved by the server and
returned to the browser.

Your browser displays the web page.

—

Web The

browser Internet

User enters: _
http://server.com

Web server
at server.com

Receive and
display page |

Look up IP
-1 address of
: server.com
Request
Server.com mﬂin srmassssmssssisssssisssisressiaieseiesnsaiannans
page using IP
Receive
request for P
index page

Fessssimsssnnsnn

I Returnthe
index page

Disk drive

at server.com

EEmsmpsmmEEsmEy

Fetch
- index.html
from hard disk

In More Detail...

You enter http://server.com into your browser’s address bar.

Your browser looks up the IP address for server.com.

Your browser issues a request to that address for the web server’s home page.
The request crosses the Internet and arrives at the server.com web server.

The web server, having received the request, fetches the home page from its hard
disk.

With the home page now in memory, the web server notices that it is a file incor-
porating PHP scripting and passes the page to the PHP interpreter.

The PHP interpreter executes the PHP code.

Some of the PHP contains MySQL statements, which the PHP interpreter now
passes to the MySQL database engine.

The MySQL database returns the results of the statements back to the PHP
interpreter

The PHP interpreter returns the results of the executed PHP code, along with the
results from the MySQL database, to the web server.

The web server returns the page to the requesting client, which displays it.

Web The Web PHP Disk MysaL

browser Internet server processor drive database
Enter ,
- ;
Looku
"""""""" t1"|nu|'.'-ll'*!:|
Request | . . .
main page

Contains
PHP
Process b .
___________________________________ Execute
_____________________________________ Return
page

Wome Gmal Calencai Beade Mond

—

1+ 40 ef abeut 3,620,008 for hiking fraily [0.19

L

Hikey ird Fally

4 [, 1900 MUY, PRl
w3 gy Bl) hling traila nea S Metrigaltan Ares
e

1 ¥ k& 2 I

I it A oA Ot R
awertTyYuior
1 } . -

A ey 3
=novdd J el

- L m g

HTML JavaScript

AJAX Cookies

Internet

HTTP

Response

Request

GET

PHP

How do Web Servers work?

* Client specifies document at a specific web
address that is desired (specified by a URL)

— Ex: http://www.just.edu.jo/

e |f the document is HTML or text, the server
simply forwards it back to the client
— If it is text, it is shown unaltered in the browser

— Ifitis HTML it is rendered in the client's browser

* html tags are interpreted and result is shown to the
user

How do Web Servers work?

* However, the requested document may be an
executable script, or it may be HTML with an
embedded script

— The script could be written in any of many different
web scripting languages

* In these cases, the server executes the script

— If the entire document was a script, the server simply
sends the output back to the client

— If the document had an embedded script, the script
sections are replaced with the output and the
modified document is then sent to the client

17

How do Web Servers work?

* Note that the client never sees the server-
side script code

— This is important — typically client should not see
code that the server executes to process requests

— The server may be accessing files whose names
should not be seen, or preprocessing data that it
does not want the client to see

Introduction. to HTML

e HTML is a mark-up language

— |ldea is that extra characters / symbols in the text
provide information to a parser, which uses that
information to render the document in a certain
way

— EX:

Hello There

— The tags do not appear in the rendered document
— The parser utilizes them to alter the appearance of the text

Introduction. to HTML

* HTML has evolved greatly over the years
— New tags have been added
— Some tags have been removed
— Syntax has been standardized
* The current version is HTML 5
— Still not universally used

Introduction to PHP

 PHP scripts are often embedded within HTML
documents

— The server processes the HTML document,
executing the PHP segments and substituting the
output within the HTML document

— The modified document is then sent to the client

— As mentioned previously, the client never sees
the PHP code

* The only reason the client even knows PHP is involved
is due to the file extension = .php

21

PHP Program Structure

 PHP, as with many scripting languages, does
not have nearly the same structural
requirements as a language like Java

— A script can be just a few lines of code or a very
large, structured program with classes and objects

* The complexity depends on the task at hand

— However, there are some guidelines for
incorporating PHP scripts into HTML files

Processes

* When a PHP file is requested, the PHP
interpreter parses the entire file

— Any content within PHP delimiter tags is
interpreted, and the output substituted

— Any other content (i.e. not within PHP delimiter
tags) is simply passed on unchanged

— This allows us to easily mix PHP and other content
(ex: HTML)

* See:

— http://us3.php.net/manual/en/language.basic-syntax.phptags.php
— http://us3.php.net/manual/en/language.basic-syntax.phpmode.php

23

http://us3.php.net/manual/en/language.basic-syntax.phptags.php
http://us3.php.net/manual/en/language.basic-syntax.phptags.php
http://us3.php.net/manual/en/language.basic-syntax.phptags.php
http://us3.php.net/manual/en/language.basic-syntax.phptags.php
http://us3.php.net/manual/en/language.basic-syntax.phptags.php
http://us3.php.net/manual/en/language.basic-syntax.phpmode.php
http://us3.php.net/manual/en/language.basic-syntax.phpmode.php
http://us3.php.net/manual/en/language.basic-syntax.phpmode.php
http://us3.php.net/manual/en/language.basic-syntax.phpmode.php
http://us3.php.net/manual/en/language.basic-syntax.phpmode.php

Consider the following PHP file

<!DOCTYPE html><f;;j’~—~———*HT“ﬂL5|300ﬂﬂent4::::::::::>

<html>
RootHTMLTag >

<head>

<title>Simple PHP Example</title>
</head>

Document Head

<body>

O O 0O

< OO0 w

<?php echo "<p><hl>Output</hl>";
echo "<h2>Output</h2>";
echo "<h3>Output</h3></p>";

?>

<script language="PHP">

echo "
";

</script>
</body>

/html>

echo "\nMore PHP Output\n";
echo "New line in source but not rendered";

PHP Code

echo "New line rendered but not in source";

24

Now consider the resulting HTML

<!DOCTYPE html>
<html>

<head>

<title>Simple PHP Example</title>

</head>

<body>

<p><h1>Output</h1><h2>0Output</h2><h3>Output</h3></p>

More PHP Output
New line in source but not rendered
New line rendered but not in s
</html>

e How will it look in the browser?

— Look at it in the browser!

Variable Names

 Start with a dollar sign (S) followed by a letter
or underscore, followed by any number of
letters, numbers, or underscores

e Case matters

$abc = 12; abc = 12;
$total = 0; $2php = 0;
$largest_so_far = 0; $bad-punc = 0;

Variable Declarations

Variables do not need to be declared before you use
them.

Example: Svarl = 25;

To help set off a variable identifier within a string,
you can surround it with curly brackets.

This will become helpful when we start discussing
arrays and objects.

Example: echo "The value is {Svar1}." will display
"The value is 25."

Data Types

e Scalar types
— boolean
— float
— Integer
— string
* Compound types
— array
— object

Using Scalar Types

* A boolean variable can be assigned only
values of true or false.

Sanswer = false;
Sfinished = true;

* An integer is a whole number (no decimal
point)

Sage = 31;

Using Scalar Types (continued)

* A float has a decimal point and may or may not have an
exponent

Sprice = 12.34;
$Savog num = 6.02e23; //6.02x10"23

* Astring is identified as a sequence of characters

Sname = "John Smith";

e Strings can be concatenated using a dot (.)

Sname = "John" . " Smith";

Constants

Constants associate a name with a scalar value.
Constants are defined using the function define().

define ("PI", 3.141593);

There are a number of predefined constants. These
include:

— M _E=2.718281828459

— M _Pl1=3.1415926535898

— M_2 SQRTPI=1.1283791670955 (Square root of pi)

— M_1 P1=0.31830988618379 (Square root of 1/pi)

— M_SQRT2 =1.4142135623731 (Square root of 2)

— M_SQRT1 2 =0.70710678118655 (Square root of)

Arithmetic Operators

Operator | Operation Example Result
+ Addition Sy = 2 + 2; | $y will contain 4
— Subtraction |*Y = 3/ $y will contain 2
Sy = Sy - 1;
/ Division Sy = 14 / 2; | $y will contain 7
* Multiplication | ¥z = 4 $y will contain 16
Sy = Sz * 4;

% Modulo Sy = 14 % 3; | $y will contain 2
++ Increment [%Y = 7/ $y will contain 8
Sy++;

- Decrement |7y = 7/ $y will contain 6

~J

Bitwise Logical Operations

Bitwise NOT operator: Inverts each bit of the
single operand placed to the right of the

symbol

Bitwise AND: Takes the logical-bitwise AND

of two va

Bitwise O
bitwise O

ues
R operator: Takes the logical-

R of two values

Bitwise XOR: Takes the logical-bitwise

exclusive-

OR of two values

Bitwise Shift Operations

e << Left shift: Shifts the left operand left by the
number of places specified by the right
operand filling in with zeros on the right side.

e >> Sign-propagating right shift: Shifts the left
operand right by the number of places
specified by the right operand filling in with
the sign bit on the left side.

°« >>> Zero-fill right shift operator: Shifts the
left operand right by the number of places
specified by the right operand filling in with
zeros on the left side.

Flow Control

* Asin JavaScript, flow control consists of a
number of reserved words combined with
syntax to allow the computer to decide which
parts of code to execute, which to jump over,
and which to execute multiple times.

* For the most part, the flow control that you
learned for JavaScript is the same for PHP.

If-Statement

* The code below represents the syntax of a
typical if-statement:
if ($grade > 93)
print "Student's grade 1s A";

 |f grade was 93 or below, the computer would
simply skip this instruction.

If-Statement (continued)

 Just like JavaScript, multiple instructions may
be grouped using curly brackets. For example:

if ($grade > 93)

{
print "Student's grade 1s A";
$honor_roll_value = true;

If-Statement (continued)

* As in JavaScript, the programmer can string together if-
statements to allow the computer to select from one of a
number of cases using elseif and else. (Note that
JavaScript allows else if while PHP uses elseif.)

* For example:

if ($grade > 93)
print "Student's grade 1s an A",
elseif ($grade > 89)

print Student's grade 1s an A-";
else

print "Student did not get an A",

Comparison Operators

> Returns true if the first value is greater
than the seconc

>= Returns true if the first value is greater
than or equal to the second

< Returns true the first value is less than
the second

<= Returns true if the first value is less than
or equal to the second

== Returns true if first value is equal to second

= Returns true if first value is not equal to
second

* &&

Logical Operators
Returns true if its operand is zero or
false

Returns false if either operand is zero
or false

Returns false if both operands are zero
or false

Switch-Statement

e The switch statement can be used as an
alternative to the if, elseif, else method.

switch (Smenu)

{

case 1:
print "You picked one";
break;

case 2:
print "You picked two";
break;

default:

print "You did not pick one or two";
break;

Switch-Statement (continued)

e Note that if a break is not encountered at the
end of a case, the processor continues through
to the next case.

* Example: If Svarl=1, it will print both lines.

switch (Svarl)
{
case 1:
print "The value was 1";
default:
print "Pick another option";
break;

While-loop

* PHP uses the while-loop just like JavaScript.

e Like the if-statement, this format also uses a
condition placed between two parenthesis

* Aslong as the condition evaluates to true, the
program continues to execute the code
between the curly brackets in a round-robin

fashion.

While-loop (continued)

* Format:

while (condition)
{

statements to execute

J

 Example:

Scount = 1;
while (Scount < 72)
{
print "Scount ";
Scount++;

}

do ... while loop

* The do ... while loop works the same as a while
loop except that the condition is evaluated at
the end of the loop rather than the beginning

* Example:

Scount = 1;
do
{

print "Scount ";
Scount++;
twhile (Scount < 72);

for-loop

* |n the two previous cases, a counter was used
to count our way through a loop.

e This task is much better suited to a for-loop.

for (Scount = 1; Scount < 72; Scount++)
{

print "Scount ";

}

* A'"break" can be used to break out of a loop
earlier.

Type Conversion

Different programming languages deal with variable
types in different ways. Some are strict enforcing rules
such as not allowing an integer value to be assigned to a
float.

The process of converting from one data type to another
is called "casting".

To convert from one type to another, place the type
name in parenthesis in front of the variable to convert
from.

In some cases, there are functions that perform the type
conversion too.

Some Examples of Type Conversion

 Sivar = (int) Svar;
 Sivar = (integer) Svar;
 Sivar = intval(Svar);

* Sbvar = (bool) Svar;

* Sbvar = (boolean) Svar;
 Sfvar = (float) Svar;

» Sfvar = floatval(Svar);

* Ssvar = (string) Svar;
 Ssvar = stringval(Svar);

Examples of Type Conversion

(continued)
~ Value Casttoint Casttobool Casttostring Casttofloat

null 0 false 0
true 1 true "1 1

false 0 false 0

0 0 false "0" 0

3.8 3 true "3.8" 3.8

"0" 0 false "0" 0

"10" 10 true "10" 10

"6 feet" 6 true "6 feet" 6

"foo" 0 true "foo" 0

Type Conversion (continued)

 PHP can automatically convert types too.

* |f a variable is used as if it were a different
type, the PHP script engine assumes a type
conversion is needed and does it for you.

 Examples:
Svar = "100" + 15; // var$ set to integer = 115
Svar = "100" + 15.0; // var$ set to float = 115

svar = 15 + " bugs"; // var$ set to integer = 15

svar = 15 . " bugs"; // var$ set to string = "15
bugs"

